Skip to main content

LLMLayer - The Web API for AI Agents

LLMLayer provides the complete web toolkit for building AI agents. Search the web, scrape content, extract data from PDFs and videos, and generate AI-powered answers - all through one unified API.

What is LLMLayer?

LLMLayer is a comprehensive web infrastructure API that gives AI agents the ability to:
  • Generate answers - Combine web data with 20+ LLMs for intelligent responses
  • Search the web - General, news, images, videos, shopping, academic papers
  • Extract content - Scrape websites as markdown, HTML, PDFs, or screenshots
  • Process documents - Extract text from PDFs and YouTube transcripts
Build AI agents that can search, read, and understand the web - without managing multiple APIs or web scraping infrastructure.

Core APIs

🤖 Answer API

Combine web search with AI models for intelligent responses:
# Web-enhanced AI answers with any of 20+ models
answer = client.answer(
    query="What's happening in quantum computing?",
    model="openai/gpt-4o-mini",  # or groq/llama-3.3-70b, deepseek/deepseek-reasoner, etc.
    search_type="news",
    return_sources=True
)

🔍 Web Search API

Direct access to web search across multiple content types:
# Search news
news = client.search_web(query="AI regulation", search_type="news", recency="day")

# Search academic papers
papers = client.search_web(query="transformer architecture", search_type="scholar")

# Search with domain filtering
results = client.search_web(
    query="machine learning",
    domain_filter=["arxiv.org", "nature.com", "-reddit.com"]
)

🌐 Scraper API

Extract content from any website in multiple formats:
# Get clean markdown
content = client.scrape(url="https://example.com", format="markdown")

# Capture screenshots
screenshot = client.scrape(url="https://example.com", format="screenshot")

# Generate PDFs
pdf = client.scrape(url="https://example.com", format="pdf")

📄 Document Processing APIs

Extract text from various sources:
# PDF text extraction
pdf_content = client.get_pdf_content(url="https://example.com/document.pdf")

# YouTube transcripts
transcript = client.get_youtube_transcript(
    url="https://youtube.com/watch?v=...",
    language="en"
)

Complete Toolkit for AI Agents

Information Gathering

  • Web search (6 types)
  • Domain filtering
  • Time-based search
  • Location targeting
  • Result ranking

Content Extraction

  • Website scraping
  • PDF processing
  • Video transcripts
  • Image extraction
  • HTML parsing

AI Processing

  • 20+ LLM models
  • 4 providers
  • Streaming support
  • Structured output
  • Custom prompts

Build Powerful AI Agents

Example: Research Agent

# 1. Search for recent papers
papers = client.search_web(
    query="large language models optimization",
    search_type="scholar"
)

# 2. Extract content from PDFs
for paper in papers.results[:3]:
    if paper.get('pdfUrl'):
        content = client.get_pdf_content(url=paper['pdfUrl'])

# 3. Scrape related websites
websites = client.search_web(query="LLM optimization techniques", search_type="general")
for site in websites.results[:5]:
    page_content = client.scrape(url=site['link'], format="markdown")

# 4. Generate comprehensive analysis
analysis = client.answer(
    query="Summarize the latest LLM optimization techniques",
    model="openai/gpt-4o",
    system_prompt="You are a research analyst. Synthesize the provided information."
)

Example: Content Monitoring Agent

# Monitor news across multiple sources
news = client.search_web(
    query="renewable energy",
    search_type="news",
    recency="hour",
    location="us"
)

# Extract full articles
articles = []
for item in news.results:
    content = client.scrape(url=item['link'], format="markdown")
    articles.append(content.markdown)

# Generate summary with citations
summary = client.answer(
    query="Summarize today's renewable energy news",
    model="groq/llama-3.3-70b-versatile",
    citations=True
)

Supported Models

Access 20+ models from leading providers with zero markup:
ProviderModelsUse Case
OpenAIGPT-5, O3, GPT-4o seriesPremium intelligence
AnthropicClaude Sonnet 4Creative & analytical tasks
GroqLlama, Qwen, Kimi, DeepSeekFast, cost-effective
DeepSeekDeepSeek Chat & ReasonerSpecialized reasoning

Transparent Pricing

Pay only for what you use - No subscriptions, no minimums, no model markup
APICostDescription
Answer API$0.004/request + model tokensWeb search + AI generation
Web Search$0.001/requestGeneral, news, images, videos, scholar
Shopping Search$0.002/requestProduct search
Scraper$0.001/requestMarkdown, HTML, screenshot, PDF
YouTube Transcript$0.001/requestMulti-language transcripts
PDF Content$0.005/requestText extraction from PDFs

Why Build with LLMLayer?

🏗️ Complete Infrastructure

Everything you need for web-aware AI agents in one API:
  • No web scraping setup required
  • No proxy management
  • No rate limit handling
  • Built-in error recovery

🔄 Maximum Flexibility

  • Switch between 20+ models instantly
  • Use your own API keys (optional)
  • Choose output formats
  • Control search parameters

⚡ Production Ready

  • 15-second timeouts
  • Automatic retries
  • Comprehensive error codes
  • RESTful API with SDKs

💰 Cost Efficient

  • No model markup
  • Use cheaper models for simple tasks
  • Premium models only when needed
  • Pay-as-you-go pricing

Quick Start Examples

from llmlayer import LLMLayerClient

client = LLMLayerClient(api_key="your-api-key")

# Search the web
results = client.search_web(
query="artificial intelligence news",
search_type="news",
recency="day"
)

# Scrape a website
content = client.scrape(
url="https://example.com/article",
format="markdown"
)

# Extract PDF content
pdf_text = client.get_pdf_content(
url="https://example.com/paper.pdf"
)

# Get YouTube transcript
transcript = client.get_youtube_transcript(
url="https://youtube.com/watch?v=..."
)

# Generate AI answer with web search
answer = client.answer(
query="What are the latest AI breakthroughs?",
model="openai/gpt-4o-mini",
return_sources=True
)

Common Use Cases

Research Assistants

Search academic papers, extract PDFs, analyze findings

Content Aggregators

Monitor news, scrape articles, generate summaries

Market Intelligence

Track competitors, analyze products, monitor trends

Documentation Tools

Archive websites, process documents, extract knowledge

Media Analyzers

Search images/videos, extract transcripts, analyze content

Q&A Systems

Answer questions with current web information

Getting Started

1

Sign Up

Create account at app.llmlayer.aiGet $2 free credits to start
2

Install SDK

pip install llmlayer
# or
npm install llmlayer
3

Choose Your API

Pick the APIs you need:
  • Web Search for information gathering
  • Scraper for content extraction
  • Document APIs for PDFs/videos
  • Answer API for AI responses
4

Build Your Agent

Combine APIs to create powerful AI agents that understand the web

FAQ

LLMLayer is specifically designed as web infrastructure for AI agents. Instead of juggling multiple services (search APIs, scraping tools, LLM providers), you get everything in one unified API with consistent interfaces and transparent pricing.
Absolutely! Many users use only our Web Search, Scraper, PDF, and YouTube APIs for data collection. The Answer API is optional - use it when you need AI-powered responses.
Our scraping infrastructure handles JavaScript rendering, manages proxies, and includes automatic retries. All operations have a 15-second timeout to ensure consistent performance.
Yes, for the Answer API you can provide your own OpenAI, Anthropic, Groq, or DeepSeek API keys. You’ll only pay our $0.004 search fee.
Rate limits depend on your subscription tier. The APIs handle rate limiting gracefully with proper error codes so you can implement retry logic.

Next Steps

Ready to build web-aware AI agents?

Start with $2 free credits. No credit card required.
I